

Ayan Shafqat

12/14/11

AN APPLICATION OF STFT
Time Stretching and Pitch Shifting

This paper illustrates an application of the Short Time Fourier Transform
(STFT) by using Phase Vocoder to time stretch and pitch shift audio signals,
also implying on it’s use in the audio digital signal processing.

 12/14/2011

 1

An Application OF STFT
Time Stretching and Pitch Shifting

INTRODUCTION
Time Stretching and Pitch Shifting is widely used by audio professionals all around the
world due to various benefits it provides. First of all, it commonly found that DJ’s often want
to remix songs in different tempo than the original. For that purpose, he or she may have two
options present. On one side, the DJ can play that segment slower, similar to the “speed”
knob on an old tape recorder. This solves the problem, but it also changes the overall pitch of
the audio signal, which the DJ may not want. There is another option for DJ’s now, which is
commonly known as time stretching. This allows a DJ or anyone to change the tempo of a
song, without compromising the pitch attributes of the signal.

Similarly, an audio engineer may want to correct a singer’s pitch without doing another
retake in the studio. Since studio time is costly, pitch shifting allows the engineer to correct
the pitch of a singer’s voice to his desired levels, without compromising on the duration of the
signal. A very elaborative application of this known as a pitch corrector, more commonly
known as Auto-Tune, which evolved from the product’s name of the company Antares. The
purpose of this application was to detect the pitch of the singer and automatically shift the
detuned pitch into the nearest quantized note. Sometimes, it is also used as a vocal effect,
used by many artists, such as
Eiffel65, Cher, T-pain, among many
others.

There are many methods of shifting
and stretching an audio signal. Some
of them time domain methods
including, Sample Overlap and Add
(SOLA), Pitch Synchronous Overlap
Add Method (PSOLA). These methods
work well for monophonic sounds, but
fail to work well for polyphonic
signals. This is mainly due to the fact
they need to find the fundamental
frequency of the signal to change the
length of the signal. For example, if a
cycle of sine wave at a certain frequency f0
needs to be shifted by a factor of two, we can assume that we can just copy the signal twice,
and down sample by a factor of two. But, having inharmonic signals present in that audio
signal will result into an unpleasant sound. Therefore, it is often observed that formants are
lost when pitch shifting with these time-domain techniques, resulting into the famous
“chipmunk” sound.

Antares AutoTune: A world-class pitch correcting software
(http://www.antarestech.com/products/auto-tune-evo.shtml)

 12/14/2011

 2

Signal diagram of SOLA

(http://homepages.inspire.net.nz/~jamckinnon/report/sola.htm)

Another form of time stretching and pitch shifting can be done with interpolation in the
frequency domain, which is known as Phase Vocoder (Flanagan J.L. and Golden 1966). Its
name derived from the original “vocoder,” which was a contraction of “voice encoder,” was
first used in encrypting voice over telephone during World War II. The original vocoder
divided the signal into different parallel band-pass components, and then resynthesized
using oscillators. This allowed the signal to be modified without affecting the overall speech.
Similarly, applying phase vocoder in a signal resulted into a signal which is time stretched
by a factor, without compromising pitch information. The diagram below shows one of the
band-pass filter components and it’s re-synthesis unit.

Signal Diagram of one filter-bank component of a Phase Vocoder

(http://www.panix.com/~jens/pvoc-dolson.par)

When we consider digital signal processing, it is a lot more efficient to implement this with
Fast Fourier Transform (FFT), since FFT can be thought of as N number of band–pass
filters. Also, FFT is invertible, for which re-synthesis can be done in an efficient manner as
well. But, an audio signal of our interest is very rarely stationary, for which we can use Short
Time Fourier Transform. In the next sections, we will explore how to implement time–
stretching and pitch–shifting algorithms using STFT.

 12/14/2011

 3

SHORT TIME FOURIER TRANSFORM (STFT)
Consider this non-stationary signal shown below. There are 800 samples of two
interchanging frequencies. Taking the Fourier Transform will result into peaks in two
different frequencies (in this example, 441 and 882Hz). We certainly know that this is not
the case in this signal, for which we need to consider STFT.

STFT, as the name sounds, takes a Discrete Fourier Transform in different short segments of
a signal. This takes account for the frequency domain, which changes in time. Thus, taking
the STFT of a signal will result into a two–dimensional matrix consisting of vectors of the
DFT coefficients. Therefore, STFT is not a frequency domain or time domain representation
of a signal, but both joint time-frequency domains, which can be very useful when analyzing
non–stationary signals. Each DFT vectors are known as a frame (denoted as m), and the
index of the coefficients is called the bin (denoted as k). STFT is defined as:

! !,! ≔ !"#" ! ! −! ! ! !
! !,! = ! ! −! ! ! !!"#

!

!!!
!

≈ ! !,! = !"!! ! ! −! ! ! ! − 1
! = 0,!!!!

When we calculate STFT, there are several parameters we must consider. First of all, we
would want to consider the block length we are considering, denoted as R. But, in order to
increase its accuracy, we must consider the overlap factor as well, denoted by W. The figures
below show the result of doing an overlap vs. no overlap. Note the increase in resolution as
we increase the overlap.

-1

-0.5

0

0.5

1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

x
(
t
)

t (seconds)

A Non-Stationary Signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

Frequency (Hz)

|x
f
(f

)|

Fourier Transform of a Non Stationary Signal

0 500 1000 1500 2000 2500 3000

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Frequency (Hz)

Ti
m

e

 12/14/2011

 4

Semi–Perfect Reconstruction Condition of STFT
In order to make STFT invertible, we have to follow a strict rule for the window design that
satisfies the condition below. This is known as the perfect reconstruction condition.

!! ! −! !
! = 1

!

But, sometimes this condition cannot be fulfilled due to different obstacles. Especially when
we are changing the DFT coefficients, or changing the overlap size, there are problems
satisfying this condition. Therefore, we just need a reconstruction condition, which is known
as a Semi-perfect reconstruction, which is shown below.

!! ! −! !
! = !

!

In this condition, we do not care if the signal matches the original. But as long as they
converge to a constant, we should not hear any artifacts in the modified signal.

TIME STRETCHING
As said before, time stretching allows us to stretch the signal without changing the frequency
contents of the signal. An easy way to achieve this would be to take the STFT, and change
the overlap size. But, this will not result into a pleasing sounding audio signal, since there is
a presence of phase discontinuity. We can think of a signal in terms of the magnitude and
phase, which we would want to keep linear. From the STFT section, we can say that, ![!,!]
can be divided into ! !,! and ∡! !,! . Also, we would want to model the signal such that,
∡! !,! is a straight line that starts at the initial phase and goes down with a constant
slope. Therefore, we need to modify the phase to keep it continuous. From the phase vocoder
diagram that was presented before (shown in page 2), by unwrapping the phase and
subtracting from the previous phase, we can make the phase continuous. Thus, we can
eliminate phase discontinuity and make the signal sound more natural.

What is a good length, and hop size? How should we choose hop size vs.
sample frequency?
The compromise that we have to make when implementing phase vocoder is to choose the
best STFT length according to the sample rate. If we choose a low length, then it does a
better job at stretching “impulsive sounds” such as drums, but fails at stretching melodic
sounds such as a piano. Also if we choose a large length, then the opposite happens, where
the drums get very distorted, while melodic components sound very clean.

Choosing an initial hop size is very important in stretching or compressing the signal. If we
are stretching the signal, then we would want to start with a low hop size, since the resulting
hop size will be larger. Conversely, if we would want to compress a signal, then we would
want to choose a larger hop size, since the resulting hop size will be smaller. Therefore, these
formulas are proposed in this paper.

! = !
! !! !, where k is a constant of 25mS. Overlap Factor is: ! = !

! !

 12/14/2011

 5

Zero Padding:
In order to maintain the optimal phase for the vocoder to function, we align the signal in the
center of the zero padding of the FFT (Lim June, 2007). Suppose, we have an R length signal,
we want to zero pad the signal to the next power of two, N. Then:

!! = !!!!
!
,!!!!,!!!!!!!

!

The overall signal chain of time stretching algorithm is shown in the figure below.

MATLAB CODE FOR TIME STRETCHING
function y = timeStretch(x, fs, r)
% ---
% timeStretch allows to stretch a signal without modifying frequency
% contents of the original signal, using short time fourier transform
% (STFT).
% Inputs:
% x = original signal
% fs = sampling frequency
% r = factor (r < 1 means stretch signal and r > 1 to compress)
% r cannot be less than or equal to 0
% Outputs: y = time stretched signal
% ---
 if(nargin ~= 3), error('Usage: y = timeStretch(x, fs, r)'); end;
 if(r <= 0), error('Stretch factor (r) has to be greater than zero'); end;
 r = 1/r;
 % Step 1: Creating a window that has perfect reconstruction condition at
 % N/4 overlap. This would be a half-cycle sine wave
 % Length of window is determined by 30mS worth of data
 K = 25e-3;

FFT

Magnitude

Phase Unwrap

Buffer

–

Previous
Phase

Polar2Rectangular

iFFT
Change Hop Size

H
New

=H
old

β

Input Signal

Output Signal

Window ×

 12/14/2011

 6

 N = round(K * (1/r) *fs);
 if(r > 1), overlapDenom = (2^ceil(r));
 else overlapDenom = round(4*r); end
 if(mod(N,overlapDenom) ~= 0),
 % Making sure N is a multiple of overlapDenom
 N = floor(N + mod(N,overlapDenom)).*overlapDenom;
 end
 window = genSinWindow(N);
 % Step 2: Pre–calculation
 NFFT = (2^nextpow2(N))*4; % FFT Length with zero padding
 hop = N/overlapDenom;
 mHop = round(hop.*r); % Modified hop after time stretch
 L = length(x); % Signal length
 NFr = ceil(L/hop); % Number of frame
 x = x(:); % Making sure x is a column vector
 % Zero padding x to prevent dimesion overflow
 x = [x; zeros(ceil((NFr*hop + N) - L), 1)];
 L2 = NFr*mHop + N; % New length of signal
 y = zeros(L2, 1); % Output signal
 n1 = 0;
 n2 = 0;
 phasePrev = fft(fftshift(padZerosAlignMiddle(x(1:N), NFFT)));
 phasePrev = phaseUnwrap(phasePrev,fs);
 while (n1 < L),
 xTemp = x(n1 + (1:N)) .* window;
 xTemp = padZerosAlignMiddle(xTemp, NFFT);
 Xk = (fft(fftshift(xTemp)));
 n1 = n1 + hop;
 mag = abs(Xk);
 phase = phaseUnwrap(Xk, fs).*(hop*r);
 phase = phase - phasePrev;
 phasePrev = phase;
 Xk = mag .* exp(1i .* phase);
 xTemp = fftshift(real(ifft(Xk)));
 y(n2 + (1:N)) = y(n2 + (1:N)) + xTemp(1:N).*window;
 n2 = n2 + mHop;
 end
 [b a] = butter(4, 20/fs,'high');
 y = filter(b, a, y);
 y = y ./ (max(abs(y)) + 10e-3);
end
function theta = phaseUnwrap(C, fs)
 phi = atan2(imag(C), real(C));
 theta = zeros(size(phi));
 N = length(phi);
 theta(1) = phi(1).*(fs/(2*pi*N));
 for k = 2:length(phi)
 theta(k) = (phi(k) - phi(k - 1)).*(fs/(2*pi*N));
 end
end
function y = padZerosAlignMiddle(x, N)
 x = x(:);
 if(length(x) > N),
 error('Zero padding error');
 end
 L = length(x); M = N - L;
 if(mod(M, 2) ~= 0),
 K = (M-1)/2; Z = zeros(K,1); y = [Z;x;Z;0];
 else
 K = M/2; Z = zeros(K,1); y = [Z;x;Z];
 end
end
function window = genSinWindow(N)
 n = 0:(N-1); window = sin(pi./N * (n + 0.5)); window = window(:);
end

 12/14/2011

 7

The output of this algorithm is shown below. Note the signal is twice as long, but the
frequency content remains the same for both signals.

PITCH SHIFTING

Pitch shifting is actually a two-step process using phase vocoder. At first we stretch the
signal with a factor, which is inverse of the factor we would want to pitch shift by. Then, we
resample the signal to the original length. The code for this is shown below.

MATLAB Code for Pitch Shifting
function y = pitchShift(x, fs, semitone)
% ---
% pitchShift allows to change pitch of a signal without modifying time
% contents of the original signal, using Short Time Fourier Transform
% (STFT).
% Inputs:
% x = original signal
% fs = sampling frequency
% Semitones = number of semitones
% ^- http://en.wikipedia.org/wiki/Semitone
% Outputs: y = pitch shifted signal
% ---
if(nargin ~= 3),
 error('Usage: y = pitchShift(x, fs, semitone)');
 end
 r = 1/(2^(1/12 *semitone)); % time stretching factor
 y = timeStretch(x, fs, r);
 t1 = (0:(length(y)-1))./fs; t2 = t1/r;
 y = interp1(t1, y, t2, 'spline'); y = y(:);
 if(length(y) > length(x)), y = y(1:length(x));
 else
 y = [y; zeros(length(x) - length(y),1)];
 end
end

0 0.1 0.2 0.3 0.4

−0.5

0

0.5

O
rig

in
al

Time (s)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

C
om

p/
St

rt

Time (s)

Time (Seconds)

kH
z

0.1 0.2 0.3 0.4

0

1

2

3

4

Time (Seconds)

kH
z

0.2 0.4 0.6 0.8

0

1

2

3

4

 12/14/2011

 8

The output of this is shown below. Note the fact that, the signal is in the same length, but
the frequency contents has shifted by a factor of two.

SOME ISSUES WITH PHASE VOCODER
As shown below, when we input a stationary signal into the phase vocoder (1KHz sine wave),
we would expect a single peak at twice its frequency (considering the pitch shift factor is 2).
But, due to window overlapping, it does not reconstruct a stationary signal.

0 0.1 0.2 0.3 0.4

−0.5

0

0.5

O
rig

in
al

Time (s)

0 0.1 0.2 0.3 0.4
−1

−0.5

0

0.5

1

C
om

p/
St

rt

Time (s)

Time (Seconds)

kH
z

0.1 0.2 0.3 0.4

0

1

2

3

4

Time (Seconds)
kH

z
0.1 0.2 0.3 0.4

0

1

2

3

4

0 2 4 6 8 10

−1

−0.5

0

0.5

1

O
rig

in
al

Time (s)

0 2 4 6 8 10
−1

−0.5

0

0.5

1

C
om

p/
St

rt

Time (s)

Time (Seconds)

kH
z

2 4 6 8 10

0

1

2

3

4

Time (Seconds)

kH
z

2 4 6 8 10

0

1

2

3

4

 12/14/2011

 9

CONCLUSION:
In order to create a more robust phase
vocoder, there have been several
articles that have proposed the use of
Wavelets. But, due to today’s
computation limits, it may not be
widely available in real time. There
have been a few proposals that use
both time and frequency domain
shifting methods that showed
promising results. Many products such
as Eventide’s Pitch Factor use this
technology to produce rich timbre.

BIBLIOGRAPHY
Flanagan J.L. and Golden, R. M. "Phase vocoder." Bell System Technical Journal 45 (1966):
1493-1509.

Lim, Kyung Ae. "An Open-Source Phase Vocoder with Some Novel Visualizations." Capstone
Project, School of Informatics, Indiana University Bloomington, Bloomington, Indiana, June,
2007.

Eventide Pitch Factor
http://www.eventide.com/AudioDivision/Products/StompBoxes/P
itchFactor.aspx

