An Implementation
of Real Time DTMF
Signal Decoder S~

EL6183: Semester Project
Polytechnic Institute of New York University
Spring 2011

6 Metrotech Center
Brooklyn, NY-11201

Ayan Shafqgat

Abstract — This document explains the use of Goertzel’s
algorithm in order to decode DTMF signal very efficiently in
real time. Also, discusses the importance of noise gate

based DFT triggering for efficient utilization of embedded
processors.

Ayan Shafqat EL6183 May 21, 2011
ID: 0309862 DTMF Decoder Using Goertzel Algorithm Page 1

Introduction

Dual Tone Multiple Frequency or DTMF scheme was invented by Bell Labs in the 1960’s for replacing
rotatory telephone dials. Rotary telephones needed more wait time since it used more pulses as digits
got higher, costing telephone companies more money. Therefore, by using a couple of base frequencies,
DTMF can be used to signal multiple signals for a short time. Although this system was used for
telephone switching system, it is rarely used now due to new digital protocols and VOIP. But, DTMF is
still used in menu driven telephone operators for many companies and government agencies.

DTMF, as the name implies, uses two tones per symbol. The symbols are composed of the digits O to
9, and some special characters such as # (called a “hash”) and * (called a “star”), and the letters A to D.
The letter symbols were dropped from a standard telephone set, but are still used for military signaling
for encrypted/private telephone calls. Each symbol of a DTMF scheme uses two sinusoid frequencies.
The lower frequency is called the low band, and the higher frequency is usually called the high band. By
correlating the two bands, DTMF signals can be decoded to which symbol was sent. The frequencies of a
DTMEF system scheme are shown in the table below.

DTMF Symbols and Corresponding Frequencies

1209 Hz 1336 Hz 1477 Hz 1633 Hz
697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz * 0 # D

The way to interpret this table is to consider the DTMF signal as the sum of the low band frequency
and the high band frequency. For example, the signal for the symbol * (denoted as x. (t)) is shown
below:

x,.(t) = %(sin(Zn(941 Hz)t) + sin(2m(1209 Hz)t))

Besides having the frequency tables for symbols, DTMF standard implements frequencies for special
events consisting of dial tone, busy signal, and ring back tone. It is not standardized globally, but each
country uses their own tones to describe these events. The application of these tones are a cell phone
hanging up after call is finished, or automatic callers calling back when the line is not busy. The
frequencies of these special events are shown in the table below.

Event Low Band High Band
Busy (US) 480 Hz 620 Hz
Ring Back (US) 440 Hz 480 Hz

Dial Tone (US) 350 Hz 440 Hz

Ayan Shafqat EL6183 May 21, 2011
ID: 0309862 DTMF Decoder Using Goertzel Algorithm Page 2

Geortzel Algorithm For Calculating DFT

Geortzel’s algorithm is very useful for calculating DFT in real time, especially for embedded
platforms. FFT is one of the most popular forms of calculating Discrete Fourier Transform, but the
process is non-causal. In order to calculate a N point FFT, all N points have to gathered before executing
FFT algorithm. The disadvantage of this is being the fact that between each samples, there is a small
window of time available for the processor to calculate the value (for a sample rate of 8 kHz, we have
125uS time window). Also, another advantage of using Geortzel’s algorithm over FFT is that, we don’t
have to calculate all the frequency bins. We can just calculate the bins we are interested in, such as the
DTMF frequencies.

Goertzel algorithm computes a sequence, s(n), given an input sequence, x(n):

s(n) = x(n) + 2cos(w)s(n — 1) — s(n — 2)

Wheres(—2) = s(—1) = 0and w is some frequency of interest, which should be less than 1/2.
This effectively implements a second-order Infinite Impulse Response Filter with poles
at et/ and e /¥, and requires only one multiplication with a constant c, which is 2cos(w). This then
requires one addition and one subtraction per input sample, thus limiting computational complexity.
Furthermore, for a given real signal, these operations are real as well.

The Z Transform of Geortzel’s algorithm is:

S(2) B 1 3 1
X(z) 1-2cos(w) (1—etjoz-1)(1—eJ®z1)

Applying an additional, FIR, transform of the form

Y(2) .
=1- —jw,_ -1
0] e /¥z
This will give a transfer function of
Y(2) B S(2)Y(z) _ 1

H(z) =

X(2) X(2)S(z) 1-ejwz-1

When this signal is transformed in the time domain, it becomes:

n n
y(n) = x(n) + y(n — et = Z x(k)elom-k) = gtjon Z x(k)e J@k
k=—o k=—c0
And for a causal system, this equation becomes:
n
y(m) = fon 3 x(kye ik
k=0

Revising back to the formula for a DFT, the above equation actually is:
N-1

X(k) = Z x(n)e_j(zzk)n

n=0

Ayan Shafqat EL6183 May 21, 2011

ID: 0309862 DTMF Decoder Using Goertzel Algorithm Page 3
N-1
X(w) = Z x(n)e™ /¥ = y(N — 1)e JoN -1
n=0

Then the Fourier Transform can be written as:
X()=y(N — 1)e /W=D =[s(N — 1) —s(N — 2) e J@]e/oW-D
When wN = k, for some integer, k, where k is in an integer representing a DFT bin:
X(w)=[s(N — 1) —s(N — 2)e/®]e/® =s(N — 1)e/® — s(N — 2)
If we are only interested at the magnitude, the power of the DFT at k™ bin can found by:
X(@)X*(w) = s?2(N — 2) + s?(N — 1) — 2cos(w)s(N — 2)s(N — 1)

Summary of the algorithm for calculating DFT

Sy[-1]1 = 0
Sy[-2] =0
fy = F/F,
Cx = 2*cos (2*u*fy);
for each sample, x[n],
sx[n] = x[n] + c*sx[n - 1] - s¢[n - 2];
end
power = si[n - 2] + si[n - 1] - c*se[n — 1]*sy[n - 2];

Algorithm (DTMF Decoder)

Decoding DTMF signals has to do with more than just calculating the DFT of the signal and analyze
them. First of all, a user may push a button at different rates from others, and telephone modems can
dial a phone number a lot faster than a user can dial (approximately 20-50mS per symbol). There are no
fixed rates for how many symbols can be pressed at a certain window of time. Thus, calculating DFT of
the signal every N samples would be pointless to decode a DTMF message. Also, realizing when a user
has done pressing the button is also crucial, so the decoder can get ready for decoding the next symbol.
Therefore, a trigger mechanism will be used to detect when a signal is present, which will trigger on the
analysis algorithm. The analysis algorithm will compute the DFT of the signal and look for magnitude
peaks at frequency bins. Since there are two tones per symbol, we only need to consider two peaks. And
from those bin indexes, the decoder can make a decision on what symbol was actually pressed. After the
symbol has been declared, the trigger mechanism has to wait until there are no signals present. The
reason behind this due to the fact that tone from a symbol still might be present after calculating DFT
and analysis.

For the triggering mechanism, | have used a simple noise gate using a rectifier (absolute value
function) with a 1* order low pass filter. Through experimenting, | have found having a time constant
around 4mS was suitable for triggering without decaying very slowly. There has to be a slight balance
between having as less rectified ripples as possible, and decay time. That is where | had to make the
most compromise. Having a higher time constant would allow me to get a clean trigger signal, but the
noise gate would attack very slowly, almost missing an entire symbol tone.

Ayan Shafqat EL6183 May 21, 2011
ID: 0309862 DTMF Decoder Using Goertzel Algorithm Page 4

In order to understand the algorithm better, a flowchart representation of the algorithm is
indicated below:

— P Input [

Signal Detection

Mo Signal
Signal Present

Calculate DFT
Using Goertzel
Algorithm

:

Analyze DFT Print Decoded
Magnitude Message

I

Wait Until
Decay

{No Signal)

Also, | looked at an analog noise gate schematic to understand how to implement noise gate for
DTMF decoder. The schematic below is a noise gate used for removing pickup noise from electric
guitars. Note the rectifier at lower left corner, comparator on upper middle, and trigger on lower right.

10F
I MXR Nowe gate
I oie g
— 100k
[] 22602 MR
insout
T2 momﬁn!a'}'
100 S, 4
1uF
INPUT 1k 19PF jLik ¢
"_ IJ — Y
o T3 []150k$2
[J1me
47nF +av
Il L
] OUTPUT
MR Qmom
T1,T2 = 25C1849 = 10uF 2 15331
T3=2N5952 _L 1?rF

+3V supply

1] -
1MQ -~ 10uF

Ayan Shafqat EL6183 May 21, 2011
ID: 0309862 DTMF Decoder Using Goertzel Algorithm Page 5

The code below shows the code for DTMF decoder.
(For full source, look into the source folder)

K R Kk s s K R K SRR K SR K SR R K SRR K SRR K K K R sk R K SRR K SR K SRR K SRR K SR K SR K sk K sk stk sk ok K ok ok

/* DTMF Decoder *
[k s sk sk sk sk ok ok ok ok ok ok ok o ok ok sk sk sk sk sk ok ok ok kok ko sk sk sk sk sk sk ok ok okok ko sk ok sk sk sk sk ok ok sk okokok ok ok sk sk sk sk ok ok ok ko ok kok sk k ok /

void DTMF_Decode(dtmf_dft G, noise_gate gate, short x) {
// Calculate DFT as reading samples
int lowB, hiB;
if(NoiseGateTriggerOn(gate, x)) {
if(G->counter < G->N) {
Goertzel DTMF_DFT_Calc(G, x);

}
else {
Find_Peak(G, &lowB, &hiB);
if(G->print_flag) {
#ifdef DTMF_DEBUG
printf("Successfuly Decoded: ");
#tendif
if(lowB == 7 & hiB == 9) printf("0");
else if(lowB == 4 & hiB == 8) printf("1");
else if(lowB == 4 & hiB == 9) printf("2");
else if(lowB == 4 & & hiB == 10) printf("3");
else if(lowB == 5 & & hiB == 8) printf("4");
else if(lowB == 5 & & hiB == 9) printf("5");
else if(lowB == 5 & & hiB == 10) printf("6");
else if(lowB == 6 & & hiB == 8) printf("7");
else if(lowB == 6 & & hiB == 9) printf("8");
else if(lowB == 6 & & hiB == 10) printf("9");
else if(lowB == 4 & & hiB == 11) printf("A");
else if(lowB == 5 & & hiB == 11) printf("B");
else if(lowB == 6 & & hiB == 11) printf("C");
else if(lowB == 7 & & hiB == 11) printf("D");
else if(lowB == @ & hiB == 1) printf("T");
else if(lowB == 1 & hiB == 2) printf("R");
else if(lowB == 2 & & hiB == 3) printf("U");
else printf(" ");
#ifdef DTMF_DEBUG
printf("\n");
#tendif
G->print_flag = 0;
}
¥
} else {

Reset DTMF_DFT(G);
NoiseGateReset(gate);
}

return;

Ayan Shafqat
1D: 0309862

Implementation of Goertzel’s Algorithm for DTMF Signal Decoding

DTMF Decoder Using Goertzel Algorithm

EL6183

May 21, 2011
Page 6

We know, we don’t have to calculate the DFT for all the frequency bins. Therefore, we must list the
frequencies that are being used by DTMF protocol. The following table used N = 250, and F, = 8000.
Note the frequency bins must be an integer.

k=L

fs

k has to be an integer, therefore we use the nearest-integer-round function.

ke = |kl

The filter coefficient is then calculated by:

2mk
Cx = 2cos N

The following table shows the Goertzel’s coefficients used in this project.

Frequency

DTMF Frequency

Index (H2) DFT Bin (k) k Ck
0 350 10.938 11 1.9241
1 440 13.750 14 1.8775
2 480 15.000 15 1.8596
3 620 19.375 19 1.7763
4 697 21.781 22 1.7020
5 770 24.063 24 1.6471
6 852 26.625 27 1.5569
7 941 29.406 29 1.4919
8 1209 37.781 38 1.1551
9 1336 41.750 42 0.9855
10 1477 46.156 46 0.8058
11 1633 51.031 51 0.5700

Ayan Shafqat EL6183 May 21, 2011
ID: 0309862 DTMF Decoder Using Goertzel Algorithm Page 7

The code below shows the implementation of Geortzel’s Algorithm for DFT

R AR K KR O K SRR SR SR KK S KK SR SKOK SR SRR SR SR KK SR SR SRR KK K oK

/* Geortzel Algorithm DFT *
%Kk kst ko sk sk sk stk sk ok sk skt sk stk ko sk sk stk ok sk sk ok sk kst ok stk sk skt sk ok ook kol ok sk ok /
#tdefine DFT_LENGTH 400
typedef struct {
float* c¢; unsigned int counter; char print_flag; unsigned int dft_done; unsigned int N;
float s[NUM_DTMF_FREQ], s1[NUM_DTMF_FREQ], s2[NUM_DTMF_FREQ];
} DTMF_DFT;
typedef DTMF_DFT* dtmf_dft;
float* Goertzel_Coef(unsigned short N) {
/* Calculates Goertzel coefficient */
short n;
static float C[NUM_DTMF_FREQ]; unsigned int k;
#ifdef DTMF_DEBUG
printf("Goertzel Coefficients\n");
printf("Frequency\tk (bin)\tCoefficient\n");
printf("-----m e \n");
#endif
for(n = @; n < NUM_DTMF_FREQ; n++) {
k = round((N*FREQ_TABLE[n])/((float)DTMF_SAMPLE_RATE));
C[n] = 2.0 * cos((TWOPI*(float)k)/(float)N);
#ifdef DTMF_DEBUG
printf("%5.2f Hz\t %d\t%f\n",FREQ_TABLE[n], k, C[n]);

#endif
¥
return C;
¥
dtmf_dft Goertzel DTMF_DFT_Init(unsigned int N) {
int n;
static DTMF_DFT newDFT;
newDFT.N = N;
newDFT.c = Goertzel_Coef(N);
for(n = ©; n < NUM_DTMF_FREQ; n++) {
newDFT.s[n] = ©; newDFT.sl[n] = @; newDFT.s2[n] = 0;
¥
newDFT.counter = 0; newDFT.print_flag = 1;
return (&newDFT);
¥

void Goertzel DTMF_DFT_Calc(dtmf_dft G, short x){
unsigned int n; if(G->counter < G->N) {
for(n = @; n < NUM_DTMF_FREQ; n++){
(G->s[n]) = Fix162Float(x) + (G->c[n])*(G->s1[n]) - (G->s2[n]);
(G->s2[n]) = (G->s1[n]); (G->s1[n]) = (G->s[n]);
}
} G->counter++;
}
void Reset_DTMF_DFT(dtmf_dft G) {
int n; for(n = @; n < NUM_DTMF_FREQ; n++) { G->s[n] = @; G->sl[n] = @; G->s2[n] = 0;}
G->counter = 0; G->print_flag = 1;
}
void Find_Peak(dtmf_dft G, int *1lowB, int *hiB) {
int n; float mag[NUM_DTMF_FREQ], max;
unsigned int index = 0;
for(n = @; n < NUM_DTMF_FREQ; n++) {
mag[n] = (G->s2[n]*G->s2[n]) + (G->s1[n]*G->s1[n]) - (G->c[n]*G->s1[n]*G->s2[n]);
if(mag[n] > max) { max = mag[n]; index = n; }
}
(*lowB) = index; mag[index] = @; index = @; max = 0;
for(n = @; n < NUM_DTMF_FREQ; n++) {
if(mag[n] > max) { max = mag[n]; index = n; }
}
(*hiB) = index;
if((*hiB) < (*1lowB)) {
index = (*lowB); (*lowB) = (*hiB); (*hiB) = index;
}

return;

Ayan Shafqat EL6183 May 21, 2011
ID: 0309862 DTMF Decoder Using Goertzel Algorithm

Page 8
Noise Gate Algorithm for Triggering DFT.
\ numyz)
[In] Pyl >
-/ den(z) X -—-’@
Input Rectifier W i » I .
Low Pass Filter > Trigger Output
0.001 Comparator

Threshold

MATLAB Code for testing different parameters for filter coefficient:

filename = 'DTMEF TEST.WAV';
f cut = 507
[x fs] = wavread(filename) ;

1 = length(x); h = 1/fs;
RC = 1/(2*pi*f cut); a = h/(h+RC); % a = Filter Coefficient
y = zeros(l,1); y(1) = x(1);
for t = 2:1,
y(t) = a*abs(x(t)) + (l-a)*y(t-1);
end;
t = (0:(length(x) -1)) / fs;
plOt(tr x, 'b-', t, Y-/maX(Y), 'I-'),’
grid on; axis ([0 0.5 =1 117)

I I PPN |

m (i wwmmh

| \H“ ‘ |

) |
“ . |
%:-02 ' ‘
OO 1 I | (1 | | |, | ||
Wl
0,11 I

t (seconds)

Ayan Shafqat EL6183 May 21, 2011
ID: 0309862 DTMF Decoder Using Goertzel Algorithm Page 9

Code below shows implementation of noise gate

K R K sk s s K R K SRR K SR K SR R K SRR K SRR K K R K R s R K SRR K SR K SRR K SRR K SRR K SR K sk R sk stk sk ok K ok ok

/* Noise Gate for Signal Detection *
/Koo sk sk ok kot ok ok sk skskskskoskokok sk kokok ok sk sk sk skskoskeskoskokok sk koo sk sk skl skskskolok s sk kst sk sk skskskoskokok sk okokok o/

typedef struct {

short threshold; // Signal threshold
short k, k2; // Filter Coefficients
short y_prev; // Previous values

} NOISE_GATE;
typedef NOISE_GATE* noise_gate;
noise_gate NoiseGateInit(void) {
static NOISE_GATE gate;
unsigned int n;
float a = ©.037786053325671L;
// Converting float to fix16_t
gate.k = Float2Fix16(a);
gate.k2 = Float2Fix16(1.0 - a);
gate.y_prev = 0;
gate.threshold = Float2Fix16(0.02);
return (&gate);
}
short NoiseGateTriggerOn(noise_gate gate, short input) {
int x, output; x = abs(input);
output = FixMult(gate->k, x) + FixMult(gate->k2, gate->y_prev);
gate->y prev = output;
if(output > gate->threshold) {
#ifdef DTMF_DEBUG
printf("Signal is ABOVE treshold (%f, %f)\n",
Fix162Float(output), Fix162Float(gate->threshold));
usleep(50000);
#tendif
return 1;
} else {
#ifdef DTMF_DEBUG
printf("Signal is below treshold (%f, %f)\n",
Fix162Float(output), Fix162Float(gate->threshold));
usleep(50000);
#tendif
return 0;
}

}
short NoiseGateTriggerOff(noise_gate gate, short input) {

int x, y1, y2, output; // Rectified input variable
// Rectifying
x = abs(input);
output = FixMult(gate->k, x) + FixMult(gate->k2, gate->y prev);
gate->y prev = output;
if(output <= gate->threshold) {
return 1;

}

else return 0;

}

void NoiseGateReset(noise_gate gate) {
gate->y _prev = 0;
}

Ayan Shafqat EL6183 May 21, 2011
ID: 0309862 DTMF Decoder Using Goertzel Algorithm Page 10

Results

Since | didn’t have a constant access to the DSK board, | had to write the program for both DSK and
PC. The algorithm ran on the DSK board, without any modification whatsoever. For accomplishing this
project, | have used libsndfile (http://www.mega-nerd.com/libsndfile/) and Sound eXchange plugin (SoX:
http://sox.sourceforge.net/) to record DTMF tones and decoding them. | have also included a fully
functional DTMF encoder in the demoExe folder as well as decoder.

How to use DTMF decoder application package:

The application package contains several application, (1) dtmf-enc: encodes a string of characters
into DTMF message and saves it to DTMF_TEST.WAV file, (2) dtmf-enc-dec: encodes and decodes DTMF
message internally in the memory, without using a wav file, (3) dtmf-enc-dec-snd: encodes a DTMF
message, saves them in the wav file (DTMF_TEST.WAV) and plays back the audio and then decodes it,
(4) dtmf-dec: Decodes a DTMF message from a given wav file (Note: the wave file needs to be at a
sample rate of 8000Hz). It is very easy to use, no command line parameters required.

Outputs
DTMF Encoder

D:\EL6183 Final ProjectDemoExes>dtmf-enc

DTMF Encoder

Author: Ayan Shafgat

(Tones: 0-9, A-D, U = Busy, R = Ringback, T = Dial Tone)
Enter DTMF Message (Up to 15 Symbols): 18885551234
Encoding message: 18885551234

DTMF Signal writing complete (DTMF_TEST.WAY)

"N\sox-14.3.2\play" DTMF_TEST.WAV
DTMF_TEST.WAV:

File Size: 40.0k Bit Rate: 128k
Encoding: Signed PCM
Channels: 1 @ 16-bit

Samplerate: 8000Hz

Replaygain: off
Duration: 00:00:02.50

In:100% 00:00:02.50 [00:00:00.00] Out:20.0k [l=====|=====1] Clip:0
Done.

Output Display in Audacity

X|DTMF_TEST ¥ | 1.0
Mono, 8000Hz
32-bit float 0.5-
Mute | Solo

o -0.5-
a O
X|DTMF_TEST ¥
Mono, 8000Hz

32-hit float
Mute | Solo

Ayan Shafqat
ID: 0309862

DTMF Decoder

EL6183
DTMF Decoder Using Goertzel Algorithm

D:M\EL6183 Final Project\DemoExe>dtmf-dec DTMF_TEST.WAV
Decoding DTMF From file: DTMF_TEST.WAY

Decoded Message: 18885551234
Press any key to continue .

DTMF Encoder and Decoder (No Sound)

D:“EL6183 Final Project\DemoExe>dtmf-enc-dec

DTMF Encoder

Author: Ayan Shafgat

(Tones: 0-9, A-D, U = Busy, R = Ringback, T = Dial Tone)
Enter DTMF Message (Up to 15 Symbols): 18005551234
Encoding message: 18005551234

DTMF signal generation complete

DTMF Encoder and Decoder (With Sound)

Done.

D:\EL6183 Final Project\DemoExe>dtmt-enc-dec-snd

DTMF Encoder

Author: Ayan Shafgat

(Tones: 0-9, A-D, U = Busy, R = Ringback, T = Dial Tone)
Enter DTMF Message {(Up to 15 Symbols): 18885551234
Encoding message: 18885551234

DTMF Signal writing complete (DTMF_TEST.WAV)

" Nsox-14.3.2\play" DTMF_TEST.WAV
DTMF_TEST. WAV :

File Size: 40.0k Bit Rate: 128k
Encoding: Signed PCM
Channels: 1 @ 16-bit

Samplerate: 8000Hz

Replaygain: off
Duration: 00:00:02.50

In:100% 00:00:02.50 [00:00:00.00] Qut:20.0k [l=====|=====1]

May 21, 2011

DTMF Decoding
Decoded Message: 18005551234
Press any key to continue .

DTMF Decoding (DTMF_TEST.WAY)
Decoded Message: 18885551234
Press any key to continue .

